- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Astafyeva, Elvira (1)
-
Bruinsma, Sean (1)
-
Codrescu, Mihail (1)
-
Cramer, William D. (1)
-
Doornbos, Eelco (1)
-
Fedrizzi, Mariangel (1)
-
Ferdousi, Banafsheh (1)
-
Fuller-Rowell, Timothy J. (1)
-
Fuller‐Rowell, Timothy J (1)
-
He, Jianhui (1)
-
Kubaryk, Adam (1)
-
Lin, Dong (1)
-
Maruyama, Naomi (1)
-
Pedatella, Nicholas M (1)
-
Pitout, Frederic (1)
-
Raeder, Joachim (1)
-
Siemes, Christian (1)
-
Strangeway, Robert J. (1)
-
Tulegenov, Beket (1)
-
Yue, Xinan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites.more » « less
-
Tulegenov, Beket; Raeder, Joachim; Cramer, William D.; Ferdousi, Banafsheh; Fuller-Rowell, Timothy J.; Maruyama, Naomi; Strangeway, Robert J. (, Annales Geophysicae)Abstract. It is well known that the polar cap, delineated by the open–closed field line boundary (OCB),responds to changes in the interplanetary magnetic field (IMF).In general, the boundary moves equatorward when the IMF turns southward and contractspoleward when the IMF turns northward. However,observations of the OCB are spotty and limited in local time,making more detailed studies of its IMF dependence difficult.Here, we simulate five solar storm periods with the coupled model consisting of the OpenGeospace General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere IonosphereModel (CTIM) and the Rice Convection Model (RCM),i.e., the OpenGGCM-CTIM-RCM, to estimate the location and dynamics of the OCB.For these events, polar cap boundary location observations are also obtained from Defense MeteorologicalSatellite Program (DMSP) precipitation spectrograms and compared with the model output.There is a large scatter in the DMSP observations and in the model output.Although the model does not predict the OCB with high fidelity for every observation,it does reproduce the general trend as a function of IMF clock angle.On average, the model overestimates the latitude of the open–closed field line boundaryby 1.61∘. Additional analysis of the simulated polar cap boundary dynamics acrossall local times shows that the MLT of the largest polar cap expansion closely correlateswith the IMF clock angle, that the strongest correlation occurs when the IMF is southward, thatduring strong southward IMF the polar cap shifts sunward, and that the polar cap rapidlycontracts at all local times when the IMF turns northward.more » « less
An official website of the United States government
